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SUMMARY

Flows over two tandem cylinders were analysed using the newly developed collocated unstructured
computational �uid dynamics (CUCFD) code, which is capable of handling complex geometries. A
Reynolds number of 100, based on cylinder diameter, was used to ensure that the �ow remained
laminar. The validity of the code was tested through comparisons with benchmark solutions for �ow
in a lid-friven cavity and �ow around a single cylinder. For the tandem cylinder �ow, also mesh
convergence was demonstrated, to within a couple of percent for the RMS lift coe�cient.
The mean and �uctuating lift and drag coe�cients were recorded for centre-to-centre cylinder spacings

between 2 and 10 diameters. A critical cylinder spacing was found between 3.75 and 4 diameters. The
�uctuating forces jumped appreciably at the critical spacing. It was found that there exists only one
reattachment and one separation point on the downstream cylinder for spacings greater than the critical
spacing.
The mean and the �uctuating surface pressure distributions were compared as a function of the cylin-

der spacing. The mean and the �uctuating pressures were signi�cantly di�erent between the upstream
and the downstream cylinders. These pressures also di�ered with the cylinder spacing. Copyright ?
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The interaction of the �ow over multiple bodies is becoming an increasingly popular �eld
of research. Such structures abound in engineering. Examples include groupings of electrical

∗Correspondence to: F. S. Lien, Department of Mechanical Engineering, University of Waterloo, University Avenue
West, Waterloo, Ont., Canada N2L 3G1.

†E-mail: fslien@uwaterloo.ca

Contract=grant sponsor: NSERC

Received 2 April 2003
Revised 4 October 2004

Copyright ? 2004 John Wiley & Sons, Ltd. Accepted 15 October 2004



424 B. SHARMAN ET AL.

transmission lines, bundles of tubes in heat exchangers, bridge piers and cables, skyscrapers
in a city and the pipes from an oil platform to the bottom of the ocean.
Cylindrical geometries often appear in engineering structures. Although these structures are

very simple, the �uid �ow around them is not. The circular cylinder is a blu� body and
forms a large separated wake. Separated wakes are nearly impossible to predict analytically
and hence must be found either through experimentation or numerical simulation. Unlike
rectangular cylinders, where the �ow separates from the corners, the �ow can separate from
any location on a circular cylinder, further complicating analyses.
The di�culty in predicting �ow around circular cylinders is multiplied when two or more

of these cylinders are placed in proximity to each other. The large separated wakes from
each of the cylinders interact with each other to form a �ow that is greatly di�erent than the
�ow around a single cylinder. The exact form of the interaction is highly dependent on the
Reynolds number of the �ow and on the cylinder placement.
There is an in�nite number of ways to place cylinders in proximity to one another. The

�uid velocity can also be varied. In order to reduce the number of simulations, only combina-
tions where one cylinder lies directly behind the other, tandem arrangement, were considered.
Simulations were conducted for a single �ow velocity, corresponding to a Reynolds number
of 100 when based on the cylinder diameter. This �ow is laminar.
The study of �ow over two cylinders has a much shorter history than that of �ow over a

single cylinder. While a few studies were conducted beforehand, interest in �ow over multiple
cylinders picked up in the mid 1970s and has continued to date. Most of the studies were
experimental investigations, although a handful of numerical simulations have recently been
conducted.
In 1977, Zdravkovich [1] summarized a variety of measurements of drag forces on two

circular cylinders in tandem arrangement. Ohya et al. [2] updated Zdravkovich’s compilation
in 1989. These authors considered Reynolds numbers between 80 and 2:3× 105 and cylinder
spacings of up to 30 diameters. They found that the drag force is largely dependent on the
Reynolds number and the cylinder spacing. A sudden increase in the drag coe�cient of both
the upstream and the downstream cylinders occurs at the critical spacing, sc, where the symbol
s refers to the non-dimensionalized cylinder spacing. For all but low Reynolds numbers with
laminar shedding, sc is around 3.6.
Igarashi [3] conducted a detailed examination of the �ow structure around two tandem

cylinders for Reynolds numbers between 3300 and 60 000. Following Zdravkovich [4] and
valid for his compilation at Reynolds numbers within the upper subcritical regime for the
single cylinder (Re=5000–300 000 approximately), the tandem cylinder �ow changes with
relative cylinder spacing as follows (limits and appearance of �ow patterns are dependent on
the Reynolds number, see also Reference [5]):

s¡1:1: the two cylinders act as a single object. The �uid between the two cylinders is
stagnant. The �ow does not reattach to the downstream cylinder.
1:1¡s¡1:6: the �ow alternately reattaches to one side and then the other side of the

downstream cylinder. A vortex street still only exists behind the rear cylinder.
1:6¡s¡2:4: both sides of the wake from the upstream cylinder are attached to the down-

stream cylinder.
2:4¡s¡3:4: the occasional reattachment onto the rear cylinder is disrupted. Consistent

vortices are not shed o� the front cylinder.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:423–447



NUMERICAL PREDICTIONS OF LOW REYNOLDS NUMBER FLOWS 425

3:4¡s¡3:8: some of the vortices roll up before striking the rear cylinder, but others do
not. This is called bistable �ow.
s¿3:8: vortices shed o� the front cylinder roll up before striking the rear cylinder. A vortex

street is formed behind both cylinders. The vortices shed o� the front cylinder interact strongly
with the vortices shed o� the rear cylinder, causing the vortices shed o� the rear cylinder to
become extremely powerful.

Flow over a single cylinder is known to transition to turbulence for Reynolds numbers
between 180 and 200 [1]. Flow visualizations of Huhe-Aode et al. [6] and Tanida et al. [7]
show that the �ow for Re=100 is laminar for all cylinder spacings. For Re=300, they report
the formation of a turbulent vortex street when the cylinder spacing is greater than the critical
cylinder spacing. Their results also show the presence of a critical spacing for low Reynolds
number �ows. They report a large Reynolds number dependence of the Strouhal number and
of the critical spacing. The critical spacing drops from 4:56sc65 for Re=100 to 3:56sc64
for Re=300 and �nally to 36sc63:5 for Re=1000.
One interesting observation of the results for Huhe-Aode et al. is that for Re=100, the

Strouhal number stays constant at 0.14 as the cylinder spacing is increased from s=5 to 10.
Instead, it is expected that the Strouhal number would approach that of a single cylinder, 0.164,
as the spacing is increased. In their experiments, Huhe-Aode et al. used a 30cm long cylinder
with a diameter of 1 cm cantilevered from one of the walls. A 10cm gap existed between the
end of the cylinder and the other wall. No end plates were used.
Measurements by Norberg [8] and Williamson [9] show the Strouhal number for �ow over

a single cylinder as the aspect ratio, AR, is increased. They showed that the Strouhal number
is around 0.14 for aspect ratios of 30 and below and around 0.16 for higher aspect ratios.
The results of Norberg and Williamson con�rm that Huhe-Aode et al. conducted their tests
using cylinders of insu�cient aspect ratio, hence their results are not representative of �ow
over two in�nitely long circular cylinders in tandem arrangement.
Numerical studies have been conducted for a Reynolds number of 100 by Li et al. [10]

and Mittal et al. [11], and for a Reynolds number of 200 by Slaouti and Stansby [12] and by
Meneghini et al. [13]. The results of current simulations have been compared against those
of Li et al. in spite of the fact that limited computer power forced them to use a coarse
mesh. Results were not compared against those of Mittal et al. as they only presented data
for two cylinder spacings, which makes it di�cult to compare trends. Also, the results were
not compared against those of Slaouti and Stansby and Meneghini et al. due to the di�erent
Reynolds number.

2. NUMERICAL METHOD

Unstructured meshes are used because meshing complicated domains is easy using freely
available meshing packages, such as MESH2D [14] and EasyMesh [15]. A more involved
discretization of the continuity and the Navier–Stokes equations is required for unstructured
meshes than for structured meshes. This section highlights the numerical discretization method
used in the collocated unstructured computational �uid dynamics (CUCFD) code, which was
used for all of the analyses presented in this paper.
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Equations (1) and (2) show the integral form of the incompressible continuity and the
Navier–Stokes equations, respectively. A non-moving control volume is assumed.

∫
S
�(v · n̂) dS=0 (1)

@
@t

∫
�
�vi d� +

∫
S
�vi(v · n̂) dS=

∫
S
Tij · n̂ dS (2)

Tij= − p�ij + �
(
@vi
@xj

+
@vj
@xi

)

Equations (1) and (2) are non-dimensionalized by the following dimensionless groups:

�x=
x
Lref

; �y=
y
Lref

; �u=
u
Uref

; �v=
v
Uref

; �p=
p
�U 2

ref
(3)

Substituting Equation (3) in Equation (2) gives us the dimensionless stress tensor �T ij:

�T ij= − �p�ij +
1
Re

(
@ �vi
@ �xj

+
@ �vj
@ �xi

)

where Re is the Reynolds number, de�ned as Re=�UrefLref =�. Lref and Uref in Equation (3)
are the reference length and the velocity, respectively. For example, for �ow over a circular
cylinder of diameter D in a free stream at a speed of U∞, Lref =D and Uref =U∞. The
overbar signs are dropped for convenience in Sections 3–5 where all variables mentioned are
in dimensionless form.
A cell-centred unstructured mesh divides the domain into triangular control volumes, or

cells. Figure 1 shows a control volume P and its immediate neighbours. The �ow variables,
velocity and pressure, are stored using a collocated variable arrangement, which means that
all of these values are stored at the cell centroids. Rhie–Chow interpolation [16] is used to
stop pressure checkerboarding from occurring.
Two notations are used in this work, one for calculations being conducted on a cell and

the second is used for calculations being conducted on a face. Figure 1 shows a cell and its
neighbours, which are referenced when using cell-based calculations. Normally the term nb

Figure 1. Cell-centred control volume.
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Figure 2. Geometry for face-based discretization: (a) Interior face, and (b) Boundary face.

is used in this work to refer to a neighbour of cell P instead of referring to the neighbouring
cells individually.
Figure 2 shows the notation that is used for face-based calculations. The vertices V0 and V1

are always counter-clockwise for cell 0 and clockwise for cell 1. The face normal is de�ned
as pointing outwards from cell 0.
For boundaries, cell 1 is always the boundary cell and cell 0 is always the interior cell.

A boundary cell has no volume, hence the face midpoint occurs at the exact same spot as
the centroid. The normal of a boundary face always points out of the domain, as it points
outwards from cell 0.
The momentum and the pressure-correction equations were solved iteratively using the

SIMPLE algorithm [17].

2.1. Gradients

According to the Green–Gauss theorem [18]:

@�
@x
=
1
�

∮
� dy;

@�
@y
= − 1

�

∮
� dx (4)

When using a �nite-volume approach, � is assumed to be constant within a control volume
and constant along each face. Hence Equation (4) can be simpli�ed to Equation (5). Here,
�f=0:5(�P + �nb) for internal cells and �f=�bnd for boundary cells. �xf= xV1 − xV0 and
�yf=yV1−yV0 for neighbour 0 of the face while �xf= xV0− xV1 and �yf=yV0−yV1 for
neighbour 1 of the face.

@�
@x
=
1
�

∑
nb
�f�yf;

@�
@y
= − 1

�
∑
nb
�f�xf (5)

Zwart [19] found that under-relaxing the gradients during the solution iteration signi�cantly
improved the convergence rate. This was veri�ed in the present study. The gradients are
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relaxed as follows:

∇�P= �grad∇�P;new + (1− �grad)∇�P;old (6)

�grad ≈ 0:8 is the recommended gradient under-relaxation parameter.

2.2. Discretization of the momentum equations for steady-state �ows

Equation (7) is the general form of the linearized momentum equation for the conservation
of the ith component of momentum. The AP, Anb coe�cients and the source term, Bi, must
be calculated for every cell. The equations for the coe�cients and the cells have been fully
presented in Reference [20]. They can be derived from the discretizations shown in this work.

APvi;P=
∑
nb
Anbvi;nb + Bi (7)

2.2.1. Discretization of the advection terms. The advection of the ith component of momen-
tum can be written for a control volume as

∑
f
mfvi;f (8)

where mf is the mass �ux into or out of the control volume. The mass �ux is calculated
as part of the pressure-correction equation, see Section 2.3, and is stored for use in
Equation (8).
The discretization scheme for vi;f of Zwart [19] is modi�ed slightly to improve upon the

accuracy of his discretization.

vi;f= vi;0 + (∇vi)0 · r0−f; mf¿0

vi;f= vi;1 + (∇vi)1 · r1−f; mf¡0
(9)

The face midpoint is not necessarily at the same point as the midpoint between cell centroids
0 and 1. Hence the r0−f or the r1−f vector is the vector from the centroid of cell 0 or 1,
respectively, to the face midpoint and not simply half of the vector between the centroids of
cells 0 and 1.

2.2.2. Discretization of the viscous terms. The viscous force on a face can be written as

Fi; v= − �(∇vi · n̂f)Sf (10)

Discretization proceeds by decomposing Fi; v as shown in Equation (11). Advantages of
this scheme are that it is linearly exact and that it requires no modi�cation between two-
dimensional and three-dimensional �ows.

Fi; v= − �(∇vi · (�r̂) +∇vi · (n̂f − �r̂))Sf (11)

where

∇vi · (�r̂)= � vi;1 − vi;0
|r| (12)
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� is a scaling factor. Zwart recommends using �= n̂f · r̂. This ensures that the ∇vi · (n̂f − �r̂)
term is used only for non-orthogonal contributions to Fi; v.

2.2.3. Discretization of the pressure terms. The pressure force on one face of a control
volume can be written as

Fp; i=pfn̂f; iSf (13)

For unstructured grids, the face midpoint may be di�erent from the midpoint of the cell-
centroids, hence a correction is required to transfer the pressure from the midpoint of the two
cell centroids to the face midpoint.

pf=
1
2
(p0 + p1) +∇p · rc (14)

2.2.4. Discretization of transient terms. The Crank–Nicolson method was used to discretize
the following transient term:

@
@t

∫
V
�vi d� (15)

A description of this method can be found in Reference [21]. This method is of second-order
accuracy.

2.3. Discretization of the pressure-correction equation for steady-state �ows

The pressure-correction equation is used to adjust the pressure so that the continuity equation
is satis�ed. The discretized form of the pressure-correction equation is

aPp′
P=

∑
anbp′

nb − Rm (16)

Rm is the mass imbalance, which is de�ned as Rm=
∑

nbmf.
The anb coe�cients were obtained from sample codes provided by Ferziger and Peric [21].

They are presented here without derivation. The AP coe�cient is that of the discretized mo-
mentum equation. The anb coe�cient is the same for both cells of a face. The anb coe�cients
are calculated using face-based looping.

anb =
1
2
�S2f

(
1

(AP)0
+

1
(AP)1

)
(17)

The aP coe�cient is the sum of the anb coe�cients in the cell.
Following the Rhie–Chow interpolation [16], the mass �ow through a face is given by

mf=�(n̂f · vavg)Sf − anb(p1 − p0 − ∇p · r) (18)
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where

vi; avg =
1
2
(vi;0 + vi;1) +∇vi · rc (19)

The pressure-correction equation is solved using a Jacobian preconditioned conjugate gradi-
ent solver [22]. The pressure-corrections are used to update the cell pressures, Equation (20),
and the face mass �uxes, Equation (21).

p=p∗ + �Pp′ (20)

mf=m∗
f + anb(p

′
0 − p′

1) (21)

�p is the under-relaxation factor for p′. This is required as the SIMPLE algorithm over-predicts
the pressure corrections [21]. There is no set under-relaxation parameter, but �p is usually
quite low, in the vicinity of 0.1–0.3. A rule of thumb is that the under-relaxation parameters
for the momentum equations and the pressure-correction equation should sum to 1.
Corrections to the face velocities are made using Equation (22). While the face velocities

are not stored, the cell-centroid velocity is corrected by the average of the face velocity
corrections.

v′f; i= − n̂f; i(p′
1 − p′

0)
1
2

(
1
AP;0

+
1
AP;1

)
Sf (22)

2.4. Boundary faces

The e�ects of boundaries are treated in the bordering interior cells. After the velocities and
pressure corrections for the interior cells are calculated, the boundary values are extrapolated
from the interior of the domain for Neumann boundary conditions, or they are speci�ed for
Dirichlet boundary conditions.
After the pressure is corrected, the boundary-cell pressure is extrapolated from its interior

neighbour using p1 =p0 + ∇p0 · r0−1. A zero-�ux Neumann boundary condition is always
used for the pressure-correction equation.
Outlet boundaries: A convective boundary condition is used for transient �ows, and is

speci�ed in the following equation:

@vi
@t
+Ubulk

@vi
@n
=0 (23)

In Equation (23), Ubulk is called the bulk velocity. It is taken as being the average inlet
velocity. The same bulk velocity is used when extrapolating all velocity components to the
outlet boundary. Le and Moin [23] reported that the convective boundary condition allowed
vortical structures to exit the outer boundary, even with a short domain, with very little
distortion.
Equation (23) is not applied directly to the boundary-cell centroid, but instead to a di�erent

point on the outlet boundary, called the OP point in Figure 3. The OP point is placed so
that the normal vector of the boundary passing through the OP point touches the interior cell
centroid.
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Figure 3. Extrapolation to outlet boundaries.

The velocities at boundary-cell centroids are calculated by a linear interpolation between
the surrounding OP points. The pressure at the boundary cell is taken as being the same as
that of its interior neighbour.

3. LID-DRIVEN CAVITY

Test cases against benchmark solutions were conducted to verify the accuracy of the dis-
cretization scheme and to test for programming errors. The lid-driven cavity test case is a
good and simple �rst test case. It is simple in that it is easy to obtain a converged solution.
It is also di�cult to obtain accurate solutions, especially for higher Reynolds numbers. Hence
this test gives an indication of the accuracy of the discretization of the momentum and the
continuity equations. The results were compared against benchmark solutions provided by
Emvin [24], who used a third-order �nite-element scheme on an extremely �ne unstructured
mesh.
The lid-driven cavity is a square box where the top wall slides to the right at a constant

speed. The other three walls are stationary. Two di�erent meshes were used for the benchmark
testing. Figure 4 shows the domain and the 8534 cell mesh, which is the �ner of the two
meshes.
Tests were conducted for an intermediate Reynolds number of 1000, where the Reynolds

number is based on the length of the square box and the speed of the top wall. Figure 5 shows
�ow streamlines. Pro�les of the u-velocity along the line x=0:5 and the v-velocity along the
line y=0:5 were compared against benchmark solutions in Figures 6(a) and 6(b), respectively.
The velocity pro�les were found to agree very closely with the benchmark solution.
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Figure 4. The computational mesh containing 8534 cells for the lid-driven cavity test case.
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Figure 5. Streamlines in the lid-driven cavity, Re=1000.

4. SINGLE CIRCULAR CYLINDER

Before simulating the �ow over two circular cylinders in tandem arrangement, it is useful
to �rst simulate the �ow around a single circular cylinder. Not only is this good to test the
accuracy of the CUCFD program, as good quality benchmarks are available, but it also serves
as a reference to judge the e�ects of adding the second cylinder.
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Figure 6. u-velocity pro�les at x=0:5, (a), and v-velocity pro�les at y=0:5, (b), for Re=1000.

Numerical simulations have been conducted since the early 1970s on �ow over circular
cylinders. Norberg [25] has compiled an extensive list comparing the RMS lift coe�cient,
C ′
l , for over 60 numerical simulations. Examining this list, the spread in the predictions for
C ′
l becomes apparent. This spread gives an indication of the complexity of the �ow and its
sensitivity to the domain size and to the mesh. Recently, numerical results have converged
upon results that are now accepted.
The Reynolds number has a large e�ect on the �ow around a circular cylinder. It is de�ned

as Re=�U∞D=�, where � is the �uid density, U∞ is the free-stream �uid velocity, D is the
diameter of the cylinder and � is the dynamic viscosity. At a Reynolds number of 100, the
�ow is laminar and the wake �uctuates periodically.

4.1. Domain and mesh

The inlet was placed 12.5 diameters upstream of the cylinder. Slip boundaries, du=dy=0 and
v=0, were placed 25 diameters above and below the cylinder. This gave a blockage ratio,
the ratio between the cylinder diameter and the height of the channel, of 2%. The outlet was
placed 25 diameters downstream of the cylinder to reduce errors propagating into the solution.
Simulations were run with a mesh of 8320 cells and with a mesh of 14 441 cells, only

results from the 14 441 cell mesh are shown. For this mesh (see Figure 7), a three-diameter
mesh seed was used along the upper and lower slip boundaries and along inlet and outlet
boundaries away from the centre. Within 10 diameters above and below the centre-line, the
mesh seeding on the inlet was re�ned to one diameter and the mesh seeding on the outlet
was re�ned to 0.5 diameters. A re�nement box of mesh seeding 0.5 diameters had lower
left and upper right corners of (−10;−10) and of (23; 10) diameters, respectively, in order
to capture any e�ects near the cylinder and the �uctuations in the cylinder wake. The mesh
spacing close to the cylinder surface is �=90=0:0349.

4.2. Results

This �ow is not steady-state. Instead the free-shear layers in the wake roll up, causing vortices
to be shed alternately from the top and the bottom of the cylinder. The simulations were able
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Figure 7. The computational mesh containing 14 441 cells for �ow over a
single circular cylinder at Re=100.

to capture the vortex shedding phenomenon without the need of having to trigger it through
arti�cial instabilities. Conceivably, vortex shedding was triggered by small di�erences between
the top and bottom of the �ow caused by the non-symmetrical unstructured mesh.
The shedding frequency is presented as the non-dimensional Strouhal number, St=fsD=U∞,

where fs is the shedding frequency, D is the diameter of the cylinder while U∞ is the free-
stream velocity.
The vortices shed from the cylinder cause the lift and drag forces to �uctuate. These forces

can be represented by a mean value and a �uctuating value. The �uctuating lift and drag com-

ponents are presented using RMS (root-mean-square) values, CRMS =
√∑N

i=1 (Ci − Cmean)2=N .
Here, CRMS (also referred to as C ′) is the RMS coe�cient for either lift or drag, Ci is the
lift or the drag coe�cient at a single point in time, Cmean is the mean lift or drag coe�cient
while N is the number of samples used to calculate the RMS coe�cient.
Mean and RMS coe�cients were found by taking one sample for each timestep for exactly

one vortex shedding cycle. Table I compares the solutions obtained from the 14 441 cell mesh
against reliable numerical simulations. In this table, coe�cients ending with a′ refer to RMS
values while the others refer to mean values.
All �uctuating quantities from Posdziech and Grundmann and by Park et al. were given

by the amplitude of the peak coe�cients. Meanwhile the �uctuating quantities presented from
the current work are presented using RMS values. In order to compare the di�erent results, it
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Table I. Comparison of obtained results vs. benchmark solutions for �ow over a single
circular cylinder, Re=100.

Posdziech and Grundmann Park et al. Current work

Year 2000 1998 —
Reference [26] [27] —
Blockage ratio 0.0071 0.01 0.02
Number of cells=103 19 39 14
Strouhal number 0.164 0.165 0.164

Cd 1.32 1.33 1.33
Cdv 0.34 0.34 0.34
Cdp 0.99 0.99 0.99
Cps — 1.03 1.04
−Cpb 0.71 0.74 0.72

C′
l 0.23 0.23 0.23
C′
lv 0.031 0.030 0.030
C′
lp 0.20 0.21 0.20
C′
d 0.0063 0.0064 0.0064
C′
dv 0.0007 0.0007 0.0004
C′
dp 0.0058 0.0058 0.0058
C′
l =C

′
d 36 36 35

For the data of Posdziech and Grundmann, the Strouhal number, Cd, C′
l , C

′
lv, C

′
lp and −Cpb were

given in Reference [26], the other results were provided by Posdziech.

is assumed that all of the forces �uctuate as sine waves. This assumption was proven to be
very accurate. The RMS value of a sine wave is 1=

√
2 times the amplitude of the wave. The

�uctuating coe�cients presented by Posdziech and Grundmann and by Park et al. shown in
Table I have all been divided by the

√
2 factor.

Table I shows that excellent agreement was obtained for the shedding frequency and the
lift and drag coe�cients against recent numerical simulations for this test case. It also appears
that decreasing the blockage ratio down from 0.02 has little e�ect.
A mean lift coe�cient of 0.006 was calculated. This coe�cient should be zero. This value

gives an indication of the mesh dependence and the accuracy of the results as it is caused by
the non-symmetrical unstructured mesh. The mean lift coe�cient is 2.6% of the �uctuating
RMS lift coe�cient.
The surface pressure distribution on the cylinder surface was also recorded. The mean

surface pressures and the RMS surface pressures are shown in Figures 8(a) and 8(b), respec-
tively. The mean surface pressure distribution is compared against results reported by Park
et al. The authors are unaware of any publication showing the RMS surface pressure distri-
bution for laminar �ows.
The mean surface pressure agrees very well with results of Park et al. [27]. The separation

point was found by examining �ow animations for locations on the surface where the vorticity
is zero. It was found to vary between 118 and 122◦.
The RMS pressure �uctuates greatly on the sides of the cylinder, but scarcely on the front

and the rear, which explains why C ′
l is so much larger than C

′
d. For turbulent �ows, a local
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Figure 8. Mean (a), and RMS (b), surface pressure distributions for �ow
over a single cylinder, Re=100.

maximum of the RMS pressure coe�cient occurs near the location of �ow separation. These
results indicate that this is not the case for low Reynolds number �ows.

5. TWO CIRCULAR CYLINDERS IN TANDEM ARRANGEMENT

Figure 9 shows the notation for the study of �ow over two tandem cylinders. All simulations
were conducted at a Reynolds number of 100. Flow over a single cylinder is laminar at
Re=100 [1]. According to Huhe-Aode et al. [6], this is also the case for �ow over two
tandem cylinders.
From an engineering standpoint, the lift and drag coe�cients and the Strouhal numbers are

crucial. They show the magnitude and the direction of the forces acting on the cylinders, and
if these forces �uctuate near structural resonating frequencies. They o�er, however, no clue
to the �uid �ow. Flow visualizations and surface pressure distributions are used to show the
�ow �eld and to explain the forces and the shedding frequencies.

5.1. Domain and mesh

The domain is very similar to that used for �ow over a single circular cylinder at Re=100,
see Figure 10. The inlet was placed 12.5 diameters upstream of cylinder 1. The outlet was
placed 20 diameters downstream of cylinder 2. The slip boundaries were placed 25 diameters
above and below the two cylinders, creating a blockage ratio of 2%.
The outer boundary was seeded in the exact same way as was done for a single cylinder.

Figure 10 shows the mesh for s=4. For s64, two mesh re�nement boxes were used. An inner
box with corners of (−2;−1:5) and (s+ 2; 1:5) was used to keep a very �ne mesh near the
cylinders. An outer re�nement box was used to ensure that the mesh did not grow uniformly
to the outer boundary, but was re�ned nearer to the cylinders and in the wake region. The
corners of this box were (−8;−10) and (s+ 18; 10). The inner re�nement box was not used
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Figure 9. Two cylinders in a tandem arrangement.
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Figure 10. The computational mesh containing 23 892 cells for a �ow over two
tandem cylinders, s=4, at Re=100.

for s¿6 because the number of cells became too large for the available computing power.
The mesh seeding on the inner re�nement box was 0.1 diameters while that on the outer
re�nement box was 0.6 diameters.
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5.2. Grid dependence study

Three di�erent meshes (coarse, medium and �ne) for s=4 with grid spacings near the cylinder
surface being �=60=0:0523, �=90=0:0349 and �=120=0:0261, respectively, are shown in
Figure 11. The numerical errors associated with these meshes are estimated based on the lift
coe�cient Cl for the front cylinder with 2406t6280 as follows (see Figure 12).

error(%) on coarse mesh =

∑t = tmax
t=tmin

|Ccl −Cfl | dt
tmax−tmin

|C fl |max
(24)

error(%) on medium mesh =

∑t = tmax
t=tmin

|Cml −Cfl | dt
tmax−tmin

|C fl |max
(25)
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Figure 11. Three computational meshes for a �ow over two tandem cylinders, s=4.
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Figure 12. Distributions of lift coe�cient Cl obtained on three
di�erent meshes for 2406t6280 and s=4.

where |C fl |max is the maximum |Cl| on the �ne mesh for tmin6t6tmax. The superscripts c, m
and f in Equations (24) and (25) stand for coarse, medium and �ne grids; tmin =260, tmax =280
and dt=0:005 are used here, giving us 60 000 sample points used in the estimation of the
numerical error based on the �ne-grid solution. It is found that the errors associated with the
coarse and medium grids are 13 and 3%, respectively. Results to be presented later are based
on the medium grid.

5.3. Global results—Strouhal number and lift and drag coe�cients

The Strouhal number in the present study was found to be the same for cylinder 1 and 2 for
all cylinder spacings. Figure 14(a) compares the Strouhal numbers against the experimental
data of Huhe-Aode et al. [6] and the numerical data of Li et al. [10]. This �gure shows
that the cylinder spacing has a large e�ect on the Strouhal number. The critical spacing is
apparent, with a large and sudden jump in the Strouhal number as the critical spacing is
passed.
Figure 13 shows snapshots of the instantaneous streamlines for s=2 and 4. For s=2, the

wake o� cylinder 1 is seen to reattach to cylinder 2. A symmetrical �ow pattern is seen
between the two cylinders. Long vortices are shed o� cylinder 2, which explains the lower
Strouhal number reported in Figure 14.
For s=4, vortices are now also shed o� of cylinder 1. These vortices move the reattachment

point and energize the �uid so that it �ows completely around cylinder 2. This e�ect is
discussed further in Section 5.4. A signi�cant amount of �uid that originally �owed below
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Figure 13. Snapshots of the instantaneous streamlines for s=2 and 4.

cylinder 1 now �ows over top of cylinder 2, which contributes to the large lift forces reported
in Figure 14.
The data of Li et al. was interesting as they reported a di�erent Strouhal number between

the two cylinders. The data shown in Figure 14(a) were reported for cylinder 1. Their results
for cylinder 2 are extremely di�erent. No explanation for the di�erence was given.
The trends predicted by the di�erent authors are similar, but large di�erences do exist. The

current results indicate that the critical spacing is 3:756sc64, Huhe-Aode et al. measured
that it is 4:56sc65, while Li et al. calculated it to be 36sc64.
As discussed in Section 1, neither the results of Huhe-Aode et al. nor those of Li

et al. are deemed to be reliable. It was proven in this section that the experiment of Huhe-
Aode et al. encountered three-dimensional e�ects because the cylinders were of insu�cient
aspect ratio. These three-dimensional e�ects were not understood at the time they conducted
their experiment. The insu�cient aspect ratio explained why the Strouhal number reported by
Huhe-Aode et al. stayed at 0.141 for s¿sc.
It was also discussed that the results of Li et al. su�ered from an insu�cient domain, insuf-

�cient number of cells and large timesteps due to the lack of computational power available.
Their results for a single cylinder did not agree well with recent accepted benchmark data.
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Figure 14. Strouhal number (a), mean drag coe�cient (b), RMS drag coe�cient (c), and RMS lift
coe�cient (d), vs cylinder spacing.

The results produced by the CUCFD program appear to be reasonable. The authors believe
that since the CUCFD program was extremely accurate for �ow over a single cylinder that it
is also accurate for �ow over two cylinders. It is hoped that future tests conducted by other
researchers will verify the accuracy of the CUCFD results.
Figures 14(b)–14(d) show the mean drag, the �uctuating drag and the �uctuating lift re-

spectively for the di�erent cylinder spacings. The simulations were carried out up to s=10.
The critical spacing is very apparent in all of these �gures. The mean drag of cylinder 2 is
negative for small spacings, meaning that this cylinder is pushed forwards by the �uid. The
drag slowly increases to small positive values and then jumps markedly at the critical spacing.
The drag of cylinder 2 does not approach that of a single cylinder, even for large cylinder
separations. The presence of cylinder 2 also reduces the drag of cylinder 1. This is because
cylinder 2 increases the pressure in the separated wake behind cylinder 1, see Figure 17(a).
The �uctuating lift and drag coe�cients follow similar trends as the spacing is increased.

All �uctuations are small at s=2. The �uctuations on cylinder 1 remain extremely low for
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sub-critical spacings. These �uctuations become extreme as the spacing increases to s=4. C ′
l

and C ′
d are 4 and 22.4 times higher than that of a single cylinder, respectively, at this cylinder

spacing. The �uctuations are slowly reduced as the cylinder spacing is increased beyond the
critical spacing.

5.4. Separation points from the two cylinders

The location of separation and reattachment points on a body have a large e�ect on the forces
acting upon it. The position of these points is also of great interest in explaining the surface
pressure distributions, which are shown in Section 5.5. Figures 15 and 16 show close-up views
of vorticity contours for s=2 and 4. Separation and reattachment points occur at locations of
zero vorticity and have been marked on these �gures.
Cylinder 1 does not have any reattachment points as the oncoming �ow is undisturbed.

There are two separation points o� of cylinder 1, one on the top and one on the bottom of
the cylinder. For s=2, the separation point was found to vary between 133 and 138◦ from
the front stagnation point. For s=4, the separation point moved further forward to between
118 and 125◦.

0 1 2 3

Separation Points

Reattachment Points

0y

0.5

-0.5

Separation Points

Reattachment Points

0 1 2 3
x

Figure 15. Instantaneous vorticity contours for s=2.
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Figure 16. Instantaneous vorticity contours for s=4.
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Figure 17. Mean surface pressure distribution for (a) upstream and (b) downstream cylinders for di�erent
cylinder spacings: (a) Cyl. 1, and (b) Cyl. 2.

The �ow experienced by cylinder 2 changed markedly between s=2 and 4. For s=2,
two separation and reattachment points exist. The reattachment points vary between 56 and
58◦ while the separation points vary between 133 and 138◦. For s=4, there exists only
one reattachment and one separation point. This was completely unexpected, but it can
be seen by examining Figure 16. The reattachment and separation points �ip from side to
side during a �ow cycle. The reattachment point varied between −41 and 41◦ while the
separation point varied between 101 and 256◦. The �ow remains attached on both sides of
the cylinder all because the pressure does not increase along the rear half of cylinder 2,
see Figure 17(b).

5.5. Mean and RMS surface pressure distributions

The pressure lift and drag coe�cients are a direct result of the pressure distribution on the
surface of the cylinders. Pressure distributions were recorded for a single vortex shedding
cycle.
Figures 17 and 18 show the mean and the RMS surface pressure distributions respectively.

The mean pressure distribution around cylinder 1, Figure 17(a), is similar to that around a
single cylinder for all cylinder spacings. The pressure at the rear of cylinder 1 is higher
for low cylinder spacings than it is for larger spacings or for a single cylinder. This ex-
plains the reduced drag force on cylinder 1 for small cylinder spacings. Figure 17(b) shows
that the mean pressure distribution around cylinder 2 never resembles that around a single
cylinder.
The pressure �uctuations are very low around both cylinders when s¡sc. For cylinder 1,

Figure 18(a), when the cylinder spacing is increased beyond sc, the pressure �uctuations
resemble those around a single cylinder. The pressure �uctuations tend towards that around
a single circular cylinder as the cylinder spacing is increased. For cylinder 2, Figure 18(b),
the pressure �uctuations do not resemble those around a single cylinder at any tested spacing.
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Figure 18. RMS surface pressure distribution for (a) upstream and (b) downstream cylinders for di�erent
cylinder spacings: (a) Cyl. 1, and (b) Cyl. 2.

The peak pressure �uctuations occur at �≈ 45◦ for s¿sc, which is near the reattachment
points.

6. CONCLUSIONS

Benchmark test cases showed that the numerical discretization is accurate, especially for low
Reynolds number �ows.
The tests for a single cylinder for Re=100 showed that the results agreed extremely well

with recent benchmark tests. The accuracy of the results for these tests gave a great deal of
con�dence in the results from the CUCFD program.
Simulations were conducted for �ow over two tandem cylinders at a Reynolds number of

100. The spacing between the cylinders was varied between 2 and 10 diameters. The mean
and the RMS drag coe�cients and the RMS lift coe�cients were plotted as a function of the
cylinder spacing. The existence of a critical spacing is very apparent, with a large jump in
the �uctuating forces and the Strouhal number. The critical spacing was found to be between
3.75 and 4 cylinder diameters.
Two separation points existed on the upstream cylinder, one on the top and one on the

bottom. For a cylinder separation of two diameters, two reattachment points and two separa-
tion points existed on the downstream cylinder, which was expected. Only one reattachment
point and one separation point were found on the downstream cylinder at a cylinder spac-
ing of four diameters. These points �uctuated between the top and the bottom sides of the
cylinder.
The mean and the RMS surface pressure distributions showed that the surface pressures were

greatly di�erent between the upstream and the downstream cylinders. The pressure �uctuations
were very low around both cylinders when the cylinder spacing was below the critical value.
These �uctuations jumped markedly as the cylinder spacing was increased beyond critical
spacings.
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NOMENCLATURE

Greek letters—lowercase
� weighting term used in discretization of di�usion discretization
� relaxation factor
�ij Kronecker delta, 1 if i= j, otherwise 0
� �uid viscosity
� �uid density
� any arbitrary scalar

Greek letters—uppercase

� volume (area for two-dimensional simulations)
� angle from the front stagnation point

Latin letters—lowercase
a coe�cient for discretized pressure correction equation
mf mass �ux through a face
m∗
f mass �ux through a face from the previous iteration
n̂ normalized face normal
nb neighbouring cell
p �uid pressure
p′ pressure correction
p∗ pressure from the previous iteration
r vector from the centroid of cell 0 to the centroid of cell 1
rc vector from the midpoint between the centroids of cells 0 and 1

and the face midpoint
r0−f vector from the centroid of cell 0 to the face midpoint
r1−f vector from the centroid of cell 1 to the face midpoint
s non-dimensionalized centre-to-centre distance between two tandem cylinders, S=D
sc critical non-dimensionalized centre-to-centre cylinder spacing
t time
u; v velocity components in the x- and y-direction, respectively
v �uid velocity vector
v′ velocity correction

Latin letters—uppercase

A coe�cient for momentum equation
D cylinder diameter
B source term for momentum equation
N number of cells
P identi�er for current cell
Rm mass imbalance for pressure-correction equation
S surface area (length for two-dimensional simulations)
U �ow velocity
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V0 vertex 0 of face
V1 vertex 1 of face

Subscripts

bnd value at the boundary
d drag
dp pressure drag
dv viscous drag
f value at face midpoint
i direction ‘i’
i instantaneous quantity
j direction ‘j’
l lift
lp pressure lift
lv viscous lift
mean mean value for �uctuating quantities
nb neighbouring cell
p pressure
pb back pressure, pressure at the rear of the cylinder
ps stagnation pressure, pressure at the front stagnation point
s separation point
P current cell
0 applies at cell ‘0’
1 applies at cell ‘1’
∞ free-stream value
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